Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Immunol ; 14: 1148268, 2023.
Article in English | MEDLINE | ID: covidwho-2317599

ABSTRACT

Introduction: COVID-19 and autoinflammatory diseases, such as Adult-onset Still's Disease (AOSD), are characterized by hyperinflammation, in which it is observed massive production and uncontrolled secretion of pro-inflammatory cytokines. The specialized pro-resolving lipid mediators (SPMs) family is one the most important processes counteracting hyperinflammation inducing tissue repair and homeostasis restoration. Among SPMs, Protectin D1 (PD1) is able to exert antiviral features, at least in animal models. The aim of this study was to compare the transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with AOSD and COVID-19 and to evaluate the role of PD1 on those diseases, especially in modulating macrophages polarization. Methods: This study enrolled patients with AOSD, COVID-19, and healthy donors HDs, undergoing clinical assessment and blood sample collection. Next-generation deep sequencing was performed to identify differences in PBMCs transcripts profiles. Plasma levels of PD1 were assessed by commercial ELISA kits. Monocyte-derived macrophages were polarized into M1 and M2 phenotypes. We analyzed the effect of PD1 on macrophages differentiation. At 10 days, macrophages were analyzed for surface expression of subtypes markers by flow cytometry. Cytokines production was measured in supernatants by Bio-Plex Assays. Results: In the transcriptomes from AOSD patients and COVID-19 patients, genes involved in inflammation, lipid catabolism, and monocytes activation were specifically dysregulated in AOSD and COVID-19 patients when compared to HDs. Patients affected by COVID-19, hospitalized in intensive care unit (ICU), showed higher levels of PD1 when compared to not-ICU hospitalized patients and HDs (ICU COVID-19 vs not-ICU COVID-19, p= 0.02; HDs vs ICU COVID-19, p= 0.0006). PD1 levels were increased in AOSD patients with SS ≥1 compared to patients with SS=0 (p=0.028) and HDs (p=0.048). In vitro treatment with PD1 of monocytes-derived macrophages from AOSD and COVID-19 patients induced a significant increase of M2 polarization vs control (p<0.05). Furthermore, a significant release of IL-10 and MIP-1ß from M2 macrophages was observed when compared to controls (p<0.05). Discussion: PD1 is able to induce pro-resolutory programs in both AOSD and COVID-19 increasing M2 polarization and inducing their activity. In particular, PD1-treated M2 macrophages from AOSD and COVID-19 patients increased the production of IL-10 and enhanced homeostatic restoration through MIP-1ß production.


Subject(s)
COVID-19 , Still's Disease, Adult-Onset , Humans , Transcriptome , Interleukin-10/metabolism , Leukocytes, Mononuclear/metabolism , Chemokine CCL4/metabolism , COVID-19/metabolism , Cytokines/metabolism , Docosahexaenoic Acids/metabolism , Macrophages , Cell Differentiation/genetics
2.
Diagnostics (Basel, Switzerland) ; 13(5), 2023.
Article in English | EuropePMC | ID: covidwho-2259361

ABSTRACT

Background: Monitoring antibody response following SARS-CoV-2 vaccination is strategic, and neutralizing antibodies represent the gold standard. The neutralizing response to Beta and Omicron VOCs was evaluated versus the gold standard by a new commercial automated assay. Methods: Serum samples from 100 healthcare workers from the Fondazione Policlinico Universitario Campus Biomedico and the Pescara Hospital were collected. IgG levels were determined by chemiluminescent immunoassay (Abbott Laboratories, Wiesbaden, Germany) and serum neutralization assay as the gold standard. Moreover, a new commercial immunoassay, the PETIA test Nab (SGM, Rome, Italy), was used for neutralization evaluation. Statistical analysis was performed with R software, version 3.6.0. Results: Anti-SARS-CoV-2 IgG titers decayed during the first ninety days after the vaccine second dose. The following booster dose significantly (p < 0.001) increased IgG levels. A correlation between IgG expression and neutralizing activity modulation was found with a significant increase after the second and the third booster dose (p < 0.05. Compared to the Beta variant of the virus, the Omicron VOC was associated with a significantly larger quantity of IgG antibodies needed to achieve the same degree of neutralization. The best Nab test cutoff for high neutralization titer (≥1:80) was set for both Beta and Omicron variants. Conclusion: This study correlates vaccine-induced IgG expression and neutralizing activity using a new PETIA assay, suggesting its usefulness for SARS-CoV2 infection management.

3.
Diabetes Metab Res Rev ; 39(3): e3601, 2023 03.
Article in English | MEDLINE | ID: covidwho-2255992

ABSTRACT

INTRODUCTION: Diabetes mellitus worsens the prognosis of SARS-CoV-2 infection, and vaccination has been the major tool for reducing the risk of hospitalisation, and mortality. The primary aim of this study was to evaluate the response to the SARS-CoV-2 vaccine in subjects with diabetes and controls. Differences between type 1 (T1D) and type 2 (T2D) diabetes and clinical determinants of vaccination response were also evaluated. METHODS: 128 subjects with diabetes (60 with T1D and 62 with T2D) and 202 subjects acting as controls who completed a full vaccination cycle with two doses of mRNA vaccine were enroled. People with previous SARS-CoV-2 infection were excluded. Antibodies (Ab) directed against the spike protein of the SARS-CoV-2 were evaluated at one and 6 months after vaccination. RESULTS: In the whole cohort, the Ab level was higher among women than in men (p = 0.011) and negatively correlated with age (rho = -0.155, p = 0.005). Subjects with diabetes showed decreased levels of Ab after one month compared to controls (1217[747-1887]BAU/mL vs. 1477[942-2556]BAU/mL, p = 0.002), even after correction for age and gender (p = 0.002). No difference was found between subjects with T1D and T2D. After 6 months, antibody levels significantly decreased in people with and without diabetes, with no differences between groups, although some subjects were lost at follow-up. In subjects with diabetes, only a significant correlation was found between Ab level and renal function (rho 0.190, p = 0.042). CONCLUSIONS: Both T1D and T2D are associated with a reduced early response to vaccination. The serum concentration of Ab significantly reduced over time in both groups, highlighting the relevance of vaccination boosters independently of the presence of diabetes.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Male , Female , Humans , Diabetes Mellitus, Type 2/complications , Follow-Up Studies , RNA, Viral , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies
4.
Diagnostics (Basel) ; 13(5)2023 Feb 26.
Article in English | MEDLINE | ID: covidwho-2259362

ABSTRACT

BACKGROUND: Monitoring antibody response following SARS-CoV-2 vaccination is strategic, and neutralizing antibodies represent the gold standard. The neutralizing response to Beta and Omicron VOCs was evaluated versus the gold standard by a new commercial automated assay. METHODS: Serum samples from 100 healthcare workers from the Fondazione Policlinico Universitario Campus Biomedico and the Pescara Hospital were collected. IgG levels were determined by chemiluminescent immunoassay (Abbott Laboratories, Wiesbaden, Germany) and serum neutralization assay as the gold standard. Moreover, a new commercial immunoassay, the PETIA test Nab (SGM, Rome, Italy), was used for neutralization evaluation. Statistical analysis was performed with R software, version 3.6.0. RESULTS: Anti-SARS-CoV-2 IgG titers decayed during the first ninety days after the vaccine second dose. The following booster dose significantly (p < 0.001) increased IgG levels. A correlation between IgG expression and neutralizing activity modulation was found with a significant increase after the second and the third booster dose (p < 0.05. Compared to the Beta variant of the virus, the Omicron VOC was associated with a significantly larger quantity of IgG antibodies needed to achieve the same degree of neutralization. The best Nab test cutoff for high neutralization titer (≥1:80) was set for both Beta and Omicron variants. CONCLUSION: This study correlates vaccine-induced IgG expression and neutralizing activity using a new PETIA assay, suggesting its usefulness for SARS-CoV2 infection management.

5.
J Pers Med ; 12(12)2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2143330

ABSTRACT

Tracking SARS-CoV-2 variants along with vaccinations are fundamental for severe COVID-19 disease prevention. A study was performed that focused on 43 patients with the SARS-CoV-2 infection who were admitted to the Emergency Department. RT-PCR-positive nasopharyngeal samples were sequenced using the MiSeq II system for variant detection. The main reason for Emergency Department admission was COVID-19 (67%), followed by other causes (33%); 51% patients were unvaccinated or vaccinated with a single dose and 49% had completed the vaccination course with two or three doses. Among the vaccinated group, 38% were admitted for COVID-19, versus 94.5% of the unvaccinated group. After admission, 50% of the vaccinated group and 36% of the unvaccinated group were discharged and allowed to go home, and 80% of the unvaccinated had no major comorbidities; 63% needed hospital admission and 5% required a stay in the Intensive Care Unit. Of these, 37% were vaccinated with 3 doses, 11% with two doses, 4% with a single dose, and 48% were unvaccinated. The 70% of the vaccinated patients who were admitted to hospital presented major comorbidities versus 38% of the unvaccinated group. Two unvaccinated patients that needed intensive care had relevant comorbidities and died. Genome sequencing showed the circulation of three omicron and two pure sub-lineages of omicron, including 22 BA.1, 12 BA.1.1, and 7 BA.2. Data showed the SARS-CoV-2 national and international migration patterns and how vaccination was useful for severe COVID-19 disease prevention.

6.
Front Med (Lausanne) ; 9: 929408, 2022.
Article in English | MEDLINE | ID: covidwho-2115318

ABSTRACT

Objective: Coronavirus disease 2019 (COVID-19) is a systemic disease induced by SARS-CoV-2 causing myocardial injury. To date, there are few data on the correlation between mid-regional proAdrenomedullin (MR-proADM) and myocardial injury. The aim of this study was to evaluate whether the association of myocardial injury and elevated mid-regional proAdrenomedullin values could predict mortality of SARS-CoV-2 patients, to offer the best management to COVID-19 patients. Materials and methods: All patients hospitalized for SARS-CoV-2 infection at the COVID-19 Center of the Campus Bio-Medico of Rome University were included between October 2020 and March 2021 and were retrospectively analyzed. Myocardial injury was defined as rising and/or fall of cardiac hs Troponin I values with at least one value above the 99th percentile of the upper reference limit (≥15.6 ng/L in women and ≥34.2 ng/L in men). The primary outcome was 30-day mortality. Secondary outcomes were the comparison of MR-proADM, CRP, ferritin, and PCT as diagnostic and prognostic biomarkers of myocardial injury. Additionally, we analyzed the development of ARDS, the need for ICU transfer, and length of stay (LOS). Results: A total of 161 patients were included in this study. Of these, 58 (36.0%) presented myocardial injury at admission. An MR-proADM value ≥ 1.19 nmol/L was defined as the optimal cut-off to identify patients with myocardial injury (sensitivity 81.0% and specificity 73.5%). A total of 121 patients (75.2%) developed ARDS, which was significantly more frequent among patients with myocardial injury (86.2 vs. 68.9%, p = 0.015). The overall 30-day mortality was 21%. Patients with myocardial injury presented significantly higher mortality compared to those without the same (46.6 vs. 6.8%, p < 0.001). When dividing the entire study population into four groups, based on the presence of myocardial injury and MR-proADM values, those patients with both myocardial injury and MR-proADM ≥ 1.19 nmol/L presented the highest mortality (53.2%, p < 0.001). The combination of myocardial injury and MR-proADM values ≥ 1.19 nmol/L was an independent predictor of death (OR = 7.82, 95% CI = 2.87-21.30; p < 0.001). Conclusion: The study is focused on the correlation between myocardial injury and MR-proADM. Myocardial injury induced by SARS-CoV-2 is strongly associated with high MR-proADM values and mortality.

7.
Pathogens ; 11(9)2022 Sep 04.
Article in English | MEDLINE | ID: covidwho-2010229

ABSTRACT

Since 2020, the COVID-19 pandemic represented an important worldwide burden. Well-structured surveillance by reliable and timely genomic data collection is crucial. In this study, a genomic monitoring analysis of all SARS-CoV-2 positive samples retrieved at the Fondazione Policlinico Universitario Campus Bio-Medico, in Rome, Italy, between December 2021 and June 2022, was performed. Two hundred and seventy-four SARS-CoV-2-positive samples were submitted to viral genomic sequencing by Illumina MiSeqII. Consensus sequences were generated by de novo assembling using the iVar tool and deposited on the GISAID database. Lineage assignment was performed using the Pangolin lineage classification. Sequences were aligned using ViralMSA and maximum-likelihood phylogenetic analysis was performed by IQ-TREE2. TreeTime tool was used to obtain dated trees. Our genomic monitoring revealed that starting from December 2021, all Omicron sub-lineages (BA.1, BA.2, BA.3, BA.4, and BA.5) were circulating, although BA.1 was still the one with the highest prevalence thought time in this early period. Phylogeny revealed that Omicron isolates were scattered throughout the trees, suggesting multiple independent viral introductions following national and international human mobility. This data represents a sort of thermometer of what happened from July 2021 to June 2022 in Italy. Genomic monitoring of the circulating variants should be encouraged considering that SARS-CoV-2 variants or sub-variants emerged stochastically and unexpectedly.

8.
J Med Virol ; 94(4): 1689-1692, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718387

ABSTRACT

The appearance of emerging variants of SARS-CoV-2 carrying mutations into the spike protein has recently raised concern with respect to tracking their transmission and mitigating the impact in the evolving pandemic across countries. AY.4.2, a recently detected Delta variant sublineage, is considered a new variant under investigation (VUI) as it carries specific genetic signatures present in the spike protein, called Y145H and A222V. Here, using genomic epidemiology, we provide the first preliminary insight regarding the circulation of this emerging VUI in Italy.


Subject(s)
COVID-19/epidemiology , Genome, Viral/genetics , SARS-CoV-2/genetics , Adolescent , Adult , Aged , COVID-19/virology , Child , Female , Genomics , Humans , Italy/epidemiology , Male , Middle Aged , Molecular Epidemiology , Mutation , Phylogeny , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Young Adult
9.
J Med Virol ; 93(10): 5924-5930, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432426

ABSTRACT

The introduction of trained sniffer dogs for COVID-19 detection could be an opportunity, as previously described for other diseases. Dogs could be trained to detect volatile organic compounds (VOCs), the whiff of COVID-19. Dogs involved in the study were three, one male and two females from different breeds, Black German Shepherd, German Shepherd, and Dutch Shepherd. The training was performed using sweat samples from SARS-CoV2 positive patients and from SARS-Cov2 free patients admitted at the University Hospital Campus Bio-medico of Rome. Gauze with sweat was collected in a glass jar with a metal top and put in metal boxes used for dog training. The dog training protocol was performed in two phases: the olfactory conditioning and the olfactory discrimination research. The training planning was focused on the switch moment for the sniffer dog, the moment when the dog was able to identify VOCs specific for COVID-19. At this time, the dog was able to identify VOCs specific for COVID-19 with significant reliability, in terms of the number of correct versus incorrect (p < 0.0001) reporting. In conclusion, this protocol could provide a useful tool for sniffer dogs' training and their introduction in a mass screening context. It could be cheaper and faster than a conventional testing method.


Subject(s)
COVID-19/diagnosis , Learning/physiology , Smell/physiology , Working Dogs/physiology , Animals , COVID-19/pathology , Dogs , Female , Humans , Male , Middle Aged , Reproducibility of Results , SARS-CoV-2/isolation & purification , Sweat/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/isolation & purification
11.
J Med Virol ; 93(5): 2820-2827, 2021 05.
Article in English | MEDLINE | ID: covidwho-927703

ABSTRACT

The widespread endothelial damage due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may lead to a disruption of the adrenomedullin (ADM) system responsible for vascular leakage, increased inflammatory status, and microvascular alteration with multi-organs dysfunction. The aim of this study was to evaluate the role of mid-regional proadrenomedullin (MR-proADM) as a marker of SARS-CoV2 related widespread endothelial damage, clinically identified by organs damage, disease severity and mortality. Patients with SARS-CoV-2 infection has been prospectively enrolled and demographic characteristic, clinical and laboratory data has been evaluated. In the overall population, 58% developed acute respiratory distress syndrome (ARDS), 23.3% of patients died, 6.5% acute cardiac injury, 1.4% of patients developed acute ischemic stroke, 21.2% acute kidney injury, 11.8% acute liver damage, and 5.4% septic shock. The best MR-proADM cut-off values for ARDS development and mortality prediction were 3.04 and 2 nmol/L, respectively. Patients presenting with MR-proADM values ≥2 nmol/L showed a significantly higher mortality risk. In conclusion, MR-proADM values ≥2 nmol/L identify those patients with high mortality risk related to a multiorgan dysfunction syndrome. These patients must be carefully evaluated and considered for an intensive therapeutic approach.


Subject(s)
Adrenomedullin/metabolism , Biomarkers , COVID-19/diagnosis , COVID-19/mortality , COVID-19/pathology , Protein Precursors/metabolism , Severity of Illness Index , Acute Kidney Injury/epidemiology , Acute Lung Injury/epidemiology , Aged , Aged, 80 and over , Brain Ischemia/epidemiology , Brain Ischemia/metabolism , Comorbidity , Female , Humans , Male , Middle Aged , Multiple Organ Failure
SELECTION OF CITATIONS
SEARCH DETAIL